
www.manaraa.com

QUT Digital Repository:
http://eprints.qut.edu.au/

Teo, Sui-Guan and Al-Mashrafi, Mufeed and Simpson, Leonie R. and Dawson,
Edward (2009) Analysis of authenticated encryption stream ciphers. In:
Proceedings (Abstracts and Papers) of the 20th National Conference of Australian
Society for Operations Research, 27-30 September 2009, Gold Coast.

 © Copyright 2009 please contact the authors

www.manaraa.com

1

ANALYSIS OF AUTHENTICATED ENCRYPTION STREAM CIPHERS

Sui-Guan Teo, Mufeed Al-Mashrafi, Leonie Simpson, Ed Dawson

Information Security Institute,

Queensland University of Technology,

GPO Box 2434, Brisbane Qld 4001, Australia

{sg.teo, mufeed.almusharafi, lr.simpson, e.dawson}@qut.edu.au

ABSTRACT

Authenticated Encryption (AE) is the cryptographic process of providing simultaneous
confidentiality and integrity protection to messages. AE is potentially more efficient than
applying a two-step process of providing confidentiality for a message by encrypting the
message and in a separate pass, providing integrity protection by generating a Message
Authentication Code (MAC) tag. This paper presents results on the analysis of three AE
stream ciphers submitted to the recently completed eSTREAM competition. We classify the
ciphers based on the methods the ciphers use to provide authenticated encryption and discuss
possible methods for mounting attacks on these ciphers.

Key Words: Authenticated Encryption, Message Authentication Codes, Stream Cipher

1. INTRODUCTION

Modern information technology systems use cryptographic mechanisms to provide
information security. Aspects of information security include confidentiality and data
integrity. Confidentiality is the assurance that information is kept secret from unauthorised
people. Where the storage or transmission medium is insecure, confidentiality is provided by
using encryption algorithms. Integrity is the assurance that modification of messages will be
detected. Integrity protection is achieved by using an authentication algorithm.

Symmetric cryptographic primitives consist of block ciphers, stream ciphers and some
Message Authentication Codes (MAC). In symmetric cryptography, both the sender and
receiver have in their possession the same secret information (the secret key) and optional
public information they use along with an algorithm to encrypt or decrypt data or produce a
MAC tag.

AE aims to provide simultaneous confidentiality and integrity for information using
symmetric cryptography. The AE mechanism shown in Figure 1, works as follows: for
encryption, a plaintext (denoted P) is changed to an unreadable format known as ciphertext
(denoted C) and the MAC tag (denoted T) of the message is also calculated. This is performed
using an authenticated encryption algorithm, which takes as input the plaintext message, the
secret key (denoted K) and optionally, some public information (denoted IV). The output of
the AE encryption consists of the ciphertext and MAC tag. These are sent across the
unsecured channel to the receiver.

Upon receiving the ciphertext (C’) and MAC tag (T) the receiver uses the authenticated
decryption algorithm to recover the message and check whether it has been modified. This
decryption algorithm takes as input the same key and IV used in the authenticated encryption
algorithm and the received ciphertext C’. The output of the authenticated decryption
algorithm is the plaintext P’ and the MAC tag T’. The receiver checks if the value of T’ is
equal to T. If it is not the same, the receiver will know that the message has been modified.

www.manaraa.com

2

Figure 1. Generic AE Diagram

1.1 Stream Ciphers

Stream ciphers encrypt one character at a time using a time-varying function. Traditionally,
the character size is one bit. Modern day stream ciphers, especially those meant for software
environments can encrypt more than one bit at a time. These stream ciphers are called word-
based stream ciphers. In either case, a critical component of the stream cipher is a keystream
generator.

A keystream generator typically consists of a series of storage registers called stages.
These stages each contain one-bit for bit-based stream ciphers, or a series of bits for word-
based stream ciphers. Typical word sizes are 16-bits and 32-bits. The contents of these stages
form the internal state of the keystream generator. The stages are often arranged to form shift
registers.

The operation of the keystream generator occurs in two phases. The initialisation phase and
the keystream generation phase. In the initialisation phase, the key and IV are loaded into the
internal state using an initialisation function. After this is done, the stream cipher transitions
to the keystream generation phase. In the keystream generation phase, the internal state gets
updated using a state update function. Selected stages are then combined using a carefully
chosen output function to produce keystream. Note that this may be produced either one bit or
one word at a time.

The most common function used as the encryption and decryption function is binary
addition modulo 2, also known as the XOR operation. The XOR function is used as it is fast
and easy to implement in both hardware and software. Furthermore, due to XOR’s
commutative properties, the same device can be used to perform both encryption and
decryption functions. A stream cipher which uses the XOR function for encryption and
decryption is called a binary-additive stream cipher. A diagram of a binary-additive stream
cipher is shown in Figure 2.

To encrypt a message, the sender initialises the keystream generator with the secret key
and IV and then generates a length of keystream. The keystream and message are then
combined using XOR operations to produce ciphertext. To decrypt the message, the receiving
end must use the same key and IV to initialise the keystream generator and produce the same

Plaintext (P)
Authenticated

Encryption Ciphertext(C)

Plaintext (P’)

Same Secret Key(K)

Same Public IV

T’ Message modified

Yes

Assume Message not modified

No

T Ciphertext(C’) T’
Authenticated
Decryption

Is T = T’?

www.manaraa.com

3

keystream. The ciphertext and keystream are then combined using XOR operations to recover
the plaintext.

Figure 2. Binary-additive stream cipher.

1.2 Message Authentication Codes

A Message Authentication Code (MAC) is a symmetric cryptographic primitive for providing
message integrity protection. MACs take a message of arbitrary length and produce an output
of fixed length known as a MAC tag. In addition to the message that is input however, MACs
require the use of a secret key for the computation of the MAC tag. The use of the secret key
means that even if an attacker has intercepted the message and knows the MAC algorithm that
was used, they are unable to make changes to the message and calculate the corresponding
MAC tag without knowledge of the key. MACs therefore provide data integrity and some
degree of data-origin protection. MACs however, do not provide non-repudiation protection.
That is, having verified the MAC tag of a message, we cannot be assured the claimed sender
actually sent the message. To provide this non-repudiation, digital signatures are required.
These make use of asymmetric cryptographic techniques which are beyond the scope of this
paper.

1.3 Authenticated Encryption Stream Ciphers

An Authenticated Encryption (AE) stream cipher combines the mechanisms for providing
both confidentiality and integrity protection into a single cryptographic primitive. The
primitive has both a confidentiality component and an integrity component. Encryption using
an AE cipher occurs in the following phases:

1. Initialisation phase: The secret key and IV are used to initialise the confidentiality and

integrity components.
2. Keystream Generation and Message Accumulation phase: The plaintext message is

encrypted and ciphertext is generated. Simultaneously, the message (either the plaintext
or ciphertext) is used to update the integrity component in a message-dependent way.
The updating of the integrity component is referred in this paper the accumulation of the
message.

3. MAC Finalisation phase: Once the plaintext has been encrypted, the integrity component
undergoes some additional post-encryption operations. At the end of this phase, the
MAC tag of the message is produced.

 Same Secret Key K

 Same Public IV

Plaintext P

Keystream
Generator

Keystream

Ciphertext C Cipertext C

Keystream
Generator

Keystream

Plaintext P

www.manaraa.com

4

AE decryption occurs in the following phases:

1. Initialisation phase: The secret key and IV are used to initialise the confidentiality and

integrity components.
2. Keystream Generation and Message Accumulation phase: The ciphertext message is

decrypted and the plaintext is recovered. Simultaneously, the message (either the plaintext
or ciphertext) is used to update the integrity component in a message-dependent way.

3. MAC Finalisation phase: Once the plaintext has been decrypted, the integrity component
undergoes some additional post-decryption operations. At the end of this phase, the MAC
tag of the message is produced.

1.4 Methods for providing Authenticated Encryption

Bellare and Namprempre (Bellare & Namprempre, 2008) investigated the security properties
of three methods for providing AE. These are Encrypt-and-MAC (E&M), MAC-then-Encrypt
(MTE) and Encrypt-then-MAC (ETM). They refer to these methods collectively as generic
compositions. These methods can be described as follows:

1. Encrypt-and-MAC (E&M): The sender first forms a MAC tag of the plaintext, encrypts

the plaintext, and then appends a MAC tag of the plaintext to ciphertext. At the receiving
end, the receiver checks the message by first decrypting the ciphertext, and then
generating his own MAC tag of the decrypted ciphertext and comparing this to the MAC
tag that was received along with the message.

2. MAC-then-Encrypt (MTE): The sender first appends a MAC tag of the plaintext to the
message and then encrypts the augmented plaintext-MAC message. At the receiving end,
the receiver checks the message by first decrypting the message to recover the plaintext
and MAC tag, then computes the MAC tag of the received plaintext, and compares it to
the MAC that was recovered through decryption.

3. Encrypt-then-MAC (ETM): The sender encrypts the plaintext to get the ciphertext. A
MAC tag of the ciphertext is then appended to the message. At the receiving end, the
receiver will first check the MAC tag. If the verification check passes, the message is
decrypted to recover to get plaintext.

Bellare and Namprempre analyse the security of the three AE methods in terms of the
following security properties:

1. Indistinguishability of encryptions under the chosen plaintext attack denoted (IND-CPA).
2. Indistinguishability of encryptions under the chosen ciphertext attack denoted (IND-

CCA).
3. Non-malleability under the chosen ciphertext attack denoted (NM-CPA).
4. Integrity of plaintexts denoted (INT-PTXT).
5. Integrity of ciphertexts denoted (INT-CTXT).

In a chosen plaintext attack, the attacker is able to choose the plaintext to be encrypted and get
the corresponding ciphertext, while in a chosen ciphertext attack, the attacker can choose
ciphertexts to be decrypted and see the plaintext corresponding to that chosen ciphertext.
Indistinguishability is the inability of an attacker to learn any information about the plaintext
from a challenge ciphertext. Non-malleability is the inability of the attacker, given a challenge
ciphertext C, to produce a different ciphertext C’ such that there is no meaningful relationship
between the decrypted messages P and P’ corresponding to C and C’ respectively. In their
analysis, Bellare and Namprempre prove that if the integrity component of an AE algorithm is

www.manaraa.com

5

strongly unforgeable, the ETM scheme provides all five of the security properties listed
above.

2. The e-STREAM PROJECT

The eSTREAM project (European Network of Excellence for Cryptology, 2008), launched in
2005, was a multi-year project whose goal was to identify new stream ciphers which might be
suitable for widespread adoption. Of the 34 stream ciphers that were submitted, seven
included an authentication mechanism. In this paper, we analyse three of these ciphers:
Sfinks, NLSv2 and Phelix. A summary of the characteristics of these ciphers, with regards to
their maximum key sizes, IV sizes, MAC tag size and the maximum amount keystream that
can be generated before rekeying needs to be done is given in Table 1.

Table 1. Basic parameters for three selected eSTREAM AE ciphers

Cipher
Name

Usage Environment Max. Key
Size in
bits

Max. IV
Size in
bits

MAC tag
size in
bits

Max.
Keystream
(in bits)
generated
from a Key-
IV pair

Sfinks Hardware 80 80 64 240
Phelix Software/Hardware 256 128 128 267
NLSv2 Software 128 128 128 253

2.1 Description of eSTREAM AE Ciphers

This section of the paper gives a brief description of the three eSTREAM AE ciphers. The
description includes the keystream generation, message accumulation and MAC finalization
phases. For a more detailed description of the ciphers, the reader is referred to the respective
specification papers.

2.1.1 Sfinks

Sfinks (Braeken et al., 2005) is a stream cipher intended for use in hardware environments.
The lengths of the secret key and nonce are each 80 bits. Sfinks generates a 64-bit MAC tag
for message integrity protection. A diagram showing the relationship between the major
components of Sfinks are shown in Figure 3.

Figure 3. Sfinks Diagram

www.manaraa.com

6

Sfinks can be divided into two sub-functions, the confidentiality component and the integrity
component. Both components make use of the 256-bit regularly clocked LFSR, denoted R,
and a 16-bit inversion S-Box.

During the keystream generation phase, the contents of selected stages from R are fed into
the S-Box. One bit from the output of the S-Box is combined with the contents of another
stage of R to form the keystream output of Sfinks. The plaintext message is then XORed with
the keystream to produce ciphertext.

The integrity component of Sfinks makes use of two 64-bit registers. The first register,
denoted SR, is a pure shift register. During message accumulation, at each time interval the
contents of all the stages of SR are moved along, with the contents of the last stage being
discarded. A single bit output from the S-Box is used to update SR. The second 64-bit register
is denoted MAC. MAC’s update function is plaintext dependent. If the current plaintext bit
being encrypted is 0, the contents of MAC remain unchanged while SR is updated. If the
current plaintext bit is 1, SR is updated and the updated contents of SR are XORed with the
contents of MAC.

Once all the plaintext has been encrypted, Sfinks enters its MAC finalization phase. In this
phase, the 64-bit contents of MAC are XORed with 64-bits of fresh keystream to generate the
64-bit MAC tag.

2.1.2 Phelix

Phelix (Whiting et al., 2005) is a synchronous cipher intended for use in both software and
hardware environments. It uses a secret key, which can be up to 256-bits in size. The IV can
be up to 128-bits in size. Phelix generates a 128-bit MAC tag for message integrity protection.
Phelix uses one component to provide both confidentiality and integrity protection.

The internal state of Phelix consists of nine 32-bit stages called state words, giving Phelix a
total internal state size of 288 bits. These state words are divided into two groups: active state
words and old state words. The five active state words are used in the state update function
while the four old state words are used in the keystream generation.

Operations in the state update function of Phelix can be described as being performed as a
series of rounds. A round consists of adding (or XORing) one active state word into another
active state word, and rotating the former word. An example of a round is shown in Figure 4,
where the active state words are represented by a, b, c, d, e. The outputs from a round are a’,
b’, c’, d’and e’. Twenty of these rounds make up one Phelix block function. Phelix’s block
function is actually two applications of the half-block function H. The details of H are
available in the Phelix paper. Phelix uses these block functions to do its encryption,
decryption and MAC operations.

Figure 4. One Phelix Round

During keystream generation and message accumulation, H takes in an input key in the
first half-block to update the active state words. In the second half-block, the second input key

<<<a

a b c d e

a’ b’ c’ d’ e’

www.manaraa.com

7

and a plaintext word are used to compute the keystream word, which is then XORed with the
plaintext to form the ciphertext.

After all the plaintext has been encrypted, Phelix enters the MAC finalization phase. In this
phase, a state word is modified by XORing with a constant value. After the state word is
modified, a post-mixing step is applied. In the post-mixing step, the value l(p) mod 4, which
is the length of the plaintext in bytes, is treated as plaintext and encrypted eight times. The
keystream generated from this process is discarded. After this initial post-mixing step,
additional post-mixing is applied. The same value l(p) mod 4 is encrypted four more times.
The four 32-bit keystream words generated from these four encryption operations form the
128-bit MAC tag for the message.

2.1.3 NLSv2

NLSv2 (Non-Linear Sober Version 2) (Hawkes et al., 2006) is an updated version of NLS.
NLS and NLSv2 are synchronous stream ciphers. NLSv2 uses a secret key and nonce, each
128 bits long. NLSv2 generates a 128-bit MAC tag. Relationships between the major
components of NLSv2 are shown in Figure 5.

Figure 5. NLSv2 Diagram

NLSv2 can be divided into two sub-functions, the confidentiality component and the integrity
component. Both the components make use of a non-linear feedback shift register (NLFSR),
denoted R, a nonlinear filter and an S-Box denoted S. R is a shift register consisting of 17
stages, each of size 32 bits, giving R a total internal state size of 544 bits. R is updated
reguarly with a nonlinear state update function. The S-Box S is used in NLSv2 to provide the
non-linearity.

In the keystream generation phase, the contents of selected stages of R are combined with a
key-dependent constant, KONST, using a nonlinear filter function. The result of these
operations is a 32-bit keystream word. These 32 bits of keystream is XORed with 32 bits of
plaintext to form 32 bits of ciphertext.

0 1 16

Plaintext P Ciphertext C

15

Non Linear Filter

 … NLFSR

...

C Register

SHA Register

State update function

...

State update function

...

State update function
...

www.manaraa.com

8

The integrity component of NLSv2 makes use of a MAC function called Mundja (Hawkes
et al., 2007). Mundja consists of two 256-bit registers. One of the registers SHA accumulates
values using a strengthened version of the SHA-256 hash function, while the other is a 256-bit
Cyclic Redundancy Check (CRC) register C. During the message accumulation phase, the
plaintext message is accumulated in both SHA and C.

After all the plaintext has been encrypted, NLSv2 enters the MAC finalization phase. This
phase consists of three steps. In the first step, a constant word is added into SHA and any
resultant keystream generated is discarded. In the second step, C’s state update function is run
eight times with an all-zero plaintext and the content of one of its states is added into SHA.
SHA’s internal state is then updated. In the final step, C’s state update function is continually
cycled with zero bit words. This time however, after the contents of C are added into SHA,
and SHA’s internal state is updated, the contents of one of SHA’s stages are used as a 32-bit
output for a portion of the MAC tag. This process is repeated another three times to produce
the 128-bit MAC tag.

3 ANALYSIS TECHNIQUES

This section briefly describes the major techniques attackers use to attack stream ciphers and
MACs.

3.1 Stream Cipher Cryptanalysis

For stream cipher cryptanalysis, it is usually assumed that the attacker has access to the
ciphertext, and possibly a certain amount of plaintext corresponding to the known ciphertext,
or an amount of keystream. A stream cipher designer needs to take into account all three as
possession of any of them makes the cipher vulnerable to certain attacks.

Where the attacker has access to the ciphertext, two attack types should be considered.
These are the ciphertext-only (or known-ciphertext) attack and the chosen ciphertext attack. If
it is possible to attack a stream cipher using the ciphertext-only attack, without making use of
plaintext, this means that the stream cipher’s keystream generator is very weak. A chosen
ciphertext attack allows the attacker to select which ciphertexts to be decrypted and attempts
to recover the key from this ciphertext. This model is not relevant to synchronous stream
ciphers since the keystream generated is not ciphertext-dependent.

Where the attacker has possession of some plaintext and the corresponding ciphertext, two
attack types can be considered: known-plaintext attack and chosen plaintext attack. For
known plaintext attacks, an attacker gains access to an amount of keystream by XORing the
plaintext and its corresponding ciphertext. For chosen-plaintext attacks, the attacker chooses
the plaintext they want encrypted and obtains the corresponding ciphertext. For most binary-
additive stream ciphers, the outcome of the known plaintext and chosen plaintext attacks is
the same: a segment of the keystream is also revealed. However, if the keystream is plaintext-
dependent, a chosen-plaintext attack may be an effective approach. This may be the case for
Phelix.

Distinguishing attacks are a form of attack that allows an attacker to determine if a
keystream has been generated from a particular stream cipher. Since the keystream output
from a stream cipher is supposed to look random, a successful distinguishing attack on a
stream cipher implies that there exist some relationships between the keystream bits that can
be used to identify the cipher. Although distinguishing attacks will not directly result in the
recovery of either the key or internal state, they reveal a potential weakness. There is also a
possibility that the observation may be extended into a key or state recovery attack. In order to
curb distinguishing attacks, stream cipher designers often impose limits on how much
keystream can be generated using a single key-IV pair before rekeying is required.

www.manaraa.com

9

An attacker’s main goal is to recover the plaintext message without prior knowledge of the
key. (In general, the attacker seeks to recover either the master key for the stream cipher or a
session key. In some attacks, it may be possible to recover the plaintext without knowledge of
a key, for example, if the same keystream is used more than once (Dawson & Nielsen, 1996)).

A master key attack can be performed regardless of whether or not the initialisation
function of the stream cipher is one-way. A master key attack means that data from multiple
encryption sessions will be rendered insecure. Once the key is recovered, the attacker will
initialise the cipher with the recovered key and IV, generate some keystream and recover the
plaintext from the ciphertext. The most naive approach to key recovery is to try all possible
keys. Stream ciphers are considered weak if an attacker is able to recover the key using less
than O(2k), where k is the size of the key in bits.

Session key attacks are also known as state recovery attacks. In a modern-day stream
cipher, the secret master key and the IV are combined together during the initialisation phase
using an initialisation function. Recovery of the internal state means that data from that
encryption session would be rendered insecure since the attacker who knows the internal state
of the cipher would be able to generate keystream to recover the plaintext message. Encrypted
data from other sessions, assuming that a different IV was used, might still be secure.

3.2 Message Authentication Code Analysis

For MAC analysis, the attacker is assumed to have complete knowledge of the MAC
algorithm and the format of the message. The attacker can either mount a forgery attack or a
key recovery attack. Resistance to MAC attacks is measured using smallest number of
operations with regards to two variables; the key size of the MAC, denoted k, and the size of
the MAC tag value, denoted d. There are three attack models against which MACs have to
provide resistance. These are the known-text attack, the chosen-text attack and the adaptive
chosen-text attack.

In MAC forgery attacks, the attacker is able to find a new message whose MAC value has
the same value as that of the original message. To avoid MAC forgery the complexity of the
attack should be O(2min(k,d)) (Hawkes et al., 2006). There are two types of forgery attacks,
selective forgeries and existential forgeries:

1. Selective forgery: An attacker is able to produce a new message-MAC pair of their own

choosing. In terms of the above-mentioned attack models, the known-text attack implies
that the attacker attempts to forge a MAC based on an arbitrary length message. The
chosen-text attack allows the attacker to analyse the resultant text-MAC pair (Menzes et
al., 1997). In the adaptive chosen-text attack, the attacker is allowed successive queries to
the MAC algorithm based on the results of previous queries (Menzes et al., 1997).

2. Existential forgery: An attacker is able to produce a new message-MAC pair, but has no
control over the contents of that message.

A key-recovery attack allows the attacker to recover the secret key and enables an attacker to
mount selective forgery attacks. A key-recovery attack constitutes a total break on the
integrity component of an AE stream cipher. A secure MAC should allow no less than O(2 k)
operations to recover the key.

3.3 Comments about AE Cryptanalysis
Key recovery attacks on AE systems are of particular importance. In generic composition
constructions, a key recovery attack on either the confidentiality or integrity component does
not necessarily affect the security of the other component as separate keys are used for
confidentiality and integrity protection. However, for AE systems, the same key is used for

www.manaraa.com

10

both confidentiality and integrity protection. Thus, a key recovery attack on either component
compromises the security provided by the other component.

The interaction between the confidentiality and integrity components of the stream ciphers
also needs to be carefully studied. If the AE stream ciphers use some of the same structure for
both confidentiality and integrity components, potential information leakage about the internal
state of the confidentiality component might be obtained from the MAC tag, or information
about the internal state of the MAC seen in the internal state of the integrity components and
vice-versa.

4 Analysis of eSTREAM AE Ciphers
In this section, we present our analysis of the three eSTREAM AE ciphers. In Section 4.1, we
classify the three using the framework given by Bellare and Namprempre reviewed in Section
1.4. In Section 4.2, we compare the efficiency of the three AE ciphers. In Section 4.3, an
analysis of security of the three algorithms is presented.

4.1 Classification based on Bellare and Namprempre generic composition scheme.

The classification under Bellare and Namprempre’s generic composition scheme is shown in
Table 2. It should be noted that although the methods used in Bellare and Namprempre’s
analysis were based on a two-pass method, this can be mapped to a one-pass method based on
how the cipher encrypts the plaintext message and calculates a MAC.

Table 2. Classification of eSTREAM authenticated encryption ciphers using Bellare and
Namprempre’s scheme.

Discussion of classification results

NLSv2 would be classified as an E&M scheme. In NLSv2, the plaintext is accumulated in
two registers, the SHA register and C. Although a content of R is used in the state update
function for the SHA registers, NLSv2 are ciphertext independent. Furthermore, the MAC for
NLSv2 is not a ciphertext output. Instead, the MAC is generated using the contents of one the
SHA registers.

Phelix would be classified as using an E&M scheme. Phelix uses one register for
performing encryption, decryption and MAC generation operations. After all the plaintext has
been encrypted, Phelix runs additional operations on the registers and generates the MAC
using the keystream word output of these additional operations.

Sfinks would be classified as a MTE scheme. During the encryption or decryption process,
the plaintext is accumulated in SR and MAC. During the MAC finalization process, the
contents of the plaintext-dependent MAC are encrypted with 64-bits of fresh keystream. This
is similar to the MTE scheme, whereby the MAC of the message is appended to the encrypted
message and encrypted.

We can also make two observations about the MTE scheme requires two passes over the
same message. The first pass calculates the MAC of the plaintext message and the second
pass encrypts the appended plaintext and MAC. Although Sfinks uses the MTE method for
providing authenticated encryption, it might not be the most efficient way of designing an AE
stream cipher.

Cipher E&M MTE ETM
Sfinks
Phelix
NLSv2

www.manaraa.com

11

The second observation is that while Bellare and Namprempre prove that the ETM scheme
provides the most security, none of the three ciphers use it. This could be because the E&M
scheme potentially provides the most efficient way of encrypting the plaintext message and
the MAC. With the E&M scheme, the cipher would be able to perform operations for
obtaining the ciphertext and MAC of the plaintext simultaneously, while for the ETM
scheme, there is the requirement that the ciphertext would need to be available before any
MAC calculations can be performed on it.

4.2 Efficiency Analysis

One of the key reasons for using stream ciphers is that they offer superior performance at
encrypting large amounts of data when compared to the other class of symmetric
confidentiality algorithms namely, block ciphers.

In analysing the efficiency of a stream cipher, one important measure is cycles-per-byte
(CPB). This measures how much CPU cycles it takes to encrypt a single byte. The lower the
CPB, the more efficient the stream cipher is. Another CPB measurement we can measure is
how much CPU cycles the ciphers require for initialising and rekeying. This is an important
measure as the longer it takes, the longer the sender needs to wait before generation of fresh
keystream begins. This in turn, leads to a delay in sending encrypted data, a delay which
might not be acceptable in real-time communications. CPB cycles for initialisation and
rekeying are not listed in this paper.

The other important measure is throughput. This is typically measured in Gigabits per
second (Gbps). A larger Gbps value means that the cipher can encrypt a larger amount of data
per second.

One of the key criteria of the eSTREAM project was that the ciphers submitted had to be
faster than the AES block cipher in counter-mode (AES-CTR) (Dworkin, 2001). Note that we
were unable to find any publicly available literature which compares the efficiency of all three
stream ciphers when implemented on a single machine. Neither was there any comparison
which compared all seven AE stream ciphers performing both confidentiality and integrity
operations. One possible reason for this is that the some of the efficiency analysis on the
stream ciphers were done during the later stages of the project, when insecure ciphers were
dropped from the competition. In this case, it wouldn’t make sense to do an efficiency
analysis on ciphers which have been deemed insecure by the cryptographic community.

Table 3 lists the timings of NLSv2 and Phelix. For the NLSv2 cipher, we have included
two versions. NLSv2 (submitted version) is the version which was submitted by the authors.
NLS with poly1305 is a modified design by Bernstein. In his design, Bernstein used the
NLSv2 confidentiality component together with his own MAC algorithm, poly1305. The idea
of including NLS with poly1305 is to show how efficient the original integrity component is
compared with an integrity component added by others. Column 1 lists timings by Bernstein’s
timing comparisons of NLS and Phelix. Column 2 lists the timings for AES-OCB (Rogaway,
2007). AES-OCB is one of the most efficient AE block cipher designs today. For a fair
comparison, AE stream cipher timings should be compared with AE block cipher timings.
AES-CTR mode only provides confidentiality protection. The extra computational operations
needed to provide integrity protection should be taken into account when analysing the
efficiency of AE stream ciphers.

www.manaraa.com

12

Table 3. Efficiency Comparison of ciphers. This table’s timings are obtained combination
from Bernstein (Bernstein, 2007) and Lipmma (Lipmma, 2008).

Cipher CPU Type/Speed 1 2
Cycles per byte
(encryption).
(Bernstein, 2007)

Cycles per byte
(encryption) for
AES-OCB
(Lipmma, 2008).

Phelix Pentium 4 3400
MHz

10.91

16.60

NLSv2
(submitted
version)

Pentium 4 3400
MHz

18.44

NLS with
poly1305
(Bernstein’s
version)

Pentium 4 3400
MHz

13.24

Discussion of efficiency results

There are various variables which could affect the timing results. Firstly, the hardware the
ciphers are run on will affect the results. For example, a hardware-based cipher run on
software might not give the best performance results. The same code run on two different
processors could give different efficient results as well.

Secondly, we need to consider if the code run on the machines are optimised versions of
the algorithm. If the code for the algorithm is optimised for the CPU the code is being run on,
it is possible to achieve very good speeds. For example, the fastest known AES-CTR code
was implemented on an Intel Core 2 Quad 64-bit processor and achieved a CPB of 7.6
(Käsper & Schwabe, 2009), a three-fold increase over the official benchmarks used in
eSTREAM. The programming language is also an important factor. Implementations written
in assembly are usually faster than implementations written in other programming languages.

In his efficiency analysis, Bernstein compared various stream ciphers combined with his
own MAC, poly1305. He implemented two versions of NLSv2; one of them used the default
authentication method given in the specification while the other combined the confidentiality
component with poly1305. Bernstein did not implement Phelix with poly1305 as Phelix
already uses the same register for providing confidentiality and integrity protection. As
Column 1 shows, the original NLSv2 CPB value is the least efficient of the ciphers Bernstein
tested, even when compared to his own design. It is because of NLSv2’s slow integrity
performance that the integrity component was dropped in the final phase of the project.

Phelix exhibited the best results of all three ciphers. It is even faster than the timings AES-
OCB obtained in Colum 3. This makes Phelix an ideal candidate for AE stream ciphers, since
it meets the original goal of having an AE stream cipher whose performance is faster than an
AE block cipher.

The efficiency analysis of a hardware-based stream cipher is different from a software-
based stream cipher. Hardware-based stream ciphers are usually implemented in small, low-
powered devices with a small amount of memory. This means that components which can be
implemented efficiently in software, like S-Boxes, might not be as efficient in hardware. One
method of measuring the hardware cost of a stream cipher is through NAND gates (Braeken
et al., 2005). The smaller the number of NAND gates, the smaller the hardware the cipher is
implemented on could be. If the number of NAND gates is too large, the chances of the
stream cipher being implemented on hardware is lower (Good et al., 2006). Another concern
of hardware stream ciphers is power usage. It is essential that if the card is to be implemented

www.manaraa.com

13

on, for example, a contactless smart card, the peak power consumption should be as low as
possible. If the device is battery-powered, the cipher would need to be as energy-efficient as
possible (Good et al., 2006).

4.3 Cryptanalysis on selected e-STREAM ciphers
This section describes the current attacks which have been applied to three eSTREAM
ciphers. It presents the current publicly known cryptanalysis on the stream ciphers and
presents some ideas on new attacks.

4.3.1 Sfinks Analysis

Current Cryptanalysis of Sfinks
The only cryptanalysis on Sfinks in the public literature is a paper by Courtois (Courtois,
2005). Courtois used a cryptanalyical technique based on the known plaintext attack called a
fast algebraic attack. Courtois used the technique to attack the confidentiality component of
Sfinks, recovering the internal state of Sfinks. Algebraic attacks on LFSR-based stream
ciphers work because an attacker is able to construct a series of linear combinations which
relate to keystream bits to all the bits of internal state. Therefore, if an attacker has enough
keystream bit outputs, he can construct a series of multivariate equations and may be possible
to solve them. Courtois showed that it may be possible to recover the internal state of Sfinks
using 238.5 keystream bits. While the amount of keystream falls within the limits set by
Sfinks’s designers (see Table 1), it could only be a theoretical break since total operations
required in the other phases of the attack surpass the security bounds of Sfinks.

New Analysis of Sfinks
One possible attack which could be applied to Sfinks is the MAC forgery attack. Since the
common component of both the confidentiality and integrity component is the Boolean
function that is what we focus on in this paper. Preliminary investigations of the output of a
scaled-down, 64-bit Boolean function behind a 17-bit LFSR have revealed that the n-bit tuple
output is not uniform. In this case, the n-bit tuple output refers to an n consecutive bit output
from a Boolean function. Furthermore, if the n-bit tuple output is large enough, there are
some outputs which will not occur at all. Both these situations mean that there may be some
internal state of SR and some 64 bit keystream which could occur more frequently than others.
Recalling the description of Sfinks from Section 2.1.1, the state update function of MAC is
plaintext-dependent. This potentially leaves Sfinks vulnerable to a chosen-plaintext attack. In
this attack, the attacker could control when the contents of SR gets XORed to MAC. Thus, the
final contents of MAC before MAC finalization occurs could be biased. If the 64-bit of fresh
keystream generated during MAC finalization is also biased, the final MAC value would be
biased.

4.3.2 Analysis of Phelix

Current Cryptanalysis of Phelix
Wu and Preneel (Wu & Preneel, 2006) used cryptanalyical technique based on the chosen-
plaintext attack, called the differential-linear attack, to mount a key recovery attack on
Phelix’s confidentiality component. In this technique, carefully chosen plaintexts are
encrypted and the output as the plaintexts are passed through a selected round is observed.
However, for this attack to succeed, repeated IVs had to be used. For the attack to succeed, a
total of chosen IVs and chosen plaintext bits had to be used. The total number of

operations used in the attack was operations. Although the amount of chosen plaintext

www.manaraa.com

14

and operations needed in the attack is below the bounds imposed by the designers, this attack
required the use of repeated IVs, which violates the basic requirements needed for proper use
of a stream cipher. This use calls for a nonce to be only used once, not twice per key, as was
the case of Wu & Preneel’s attack.

New Analysis of Phelix
Recall the description of Phelix in Section 2.1.2. The plaintext message is used in the
generation of fresh keystream. This leaves it open to chosen plaintext attacks, specifically
attacks with regards to IND-CPA, which was described in Section 1. If an attacker wants to,
for example, forge a MAC, they would need to be able to also choose carefully selected
plaintext. However, unlike the differential-linear attack which Wu and Preneel employed,
where they used the differences observed after the plaintext is passed through the particular
round, the attacker who hopes to mount a successful MAC forgery would need to ensure that
differences in the plaintext would cancel out after being passed through all 20 encryption
rounds and the 12 additional rounds it goes through before the final MAC is produced.

4.3.3 Analysis of NLSv2

Current Cryptanalysis of NLSv2
Cho and Pieprzyk (Cho & Pieprzyk, 2006) used a technique based on the known plaintext
attack called a distinguishing attack on NLSv2’s confidentiality component. This attack
investigates high correlation between two neighbouring bits of the cipher. In their analysis,
they noted that bit number 29 and 30 of the output of S-Box had a high correlation. So the
attack exploits this correlation to make a linear approximation on NFSR and on NLF. As a
result of that, a distinguisher of NLSv2 has a bias of 2-37 and so the attacker required only 279

bits of keystream to distinguish the keystream of NLSv2 from random. Cho and Pieprzyk
claim that this falls within the amount of keystream generated (280 bits) before rekeying needs
to be done. However, from Table 1, a new session key should be generated after at most 253
bits of plaintext are encrypted. This means that the distinguishing attack of Cho and Pieprzyk
has no practical significance.

New Analysis of NLSv2
This analysis focuses on the integrity component of NLSv2. From the description in 2.1.3, we
can make an observation about the integrity component of NLSv2. The CRC register C is
updated in a linear manner and it takes as input, the plaintext word that is going to be
encrypted. This may leave it vulnerable to a chosen plaintext attack. In this attack, the attacker
mount a chosen-plaintext attack and select carefully selected plaintext that would yield the
same final state before the final MAC processing phase starts. Assuming the same key and IV
are used, any further updates from this point onwards is insignificant, as the final MAC
processing consists of a standard series of steps. The values generated from this are the same
if the same key and IV are used. However, even if the attacker is able to generate collisions
for the CRC registers, they will not be able to forge a MAC. This is because the integrity
component of NLSv2 consists of another register, the SHA registers. Therefore, even with
collisions in the CRC registers, with plaintext feeding into the SHA registers as well, the
MAC values generated in the end will be different.

5 CONCLUSION
In this paper, we have classified the three AE ciphers according to Bellare and Namprempre
based on the three common methods of providing authenticated encryption. The majority of
the ciphers used the E&M scheme, due to the potential parallelisability of the confidentiality

www.manaraa.com

15

and integrity components. However, more detailed analysis of other AE ciphers need to be
done in order to establish if the E&M scheme of providing AE is the “best” choice.

Secondly, a comparison of the efficiency of two ciphers was done. It is shown that
NLSv2’s original authenticator is slower than AES-OCB. This was the main reason why
NLSv2 was removed from the eSTREAM project. One of the key reasons for choosing AE
stream ciphers over AE block ciphers is their high efficiency and speed. If the stream cipher is
slower than an AE block cipher, it is unlikely to be adopted for use. Thus, an important design
criterion for AE stream ciphers is that they should be faster than their block cipher
counterparts.

A review of the current attacks on the three ciphers shows that none of these attacks fall
within the security bounds set by the designers and are of no practical significance. However,
these attacks reveal weaknesses in the AE stream cipher design and warrant further
investigation to see if more efficient attacks can be found.

Finally, the integrity components of all three ciphers were analysed. The biased n-bit tuple
output of a nonlinear Boolean function needs further investigation to establish the factors
which could contribute to the bias and how this could be applied to a MAC forgery attack on
Sfinks. We described a possible MAC forgery attack on Phelix assuming the attacker is able
to find a pair of plaintext which can produce the same output after going through the
keystream generation and MAC finalisation phases. Analysis of NLSv2 integrity component
reveals it could be possible to mount a chosen-plaintext attack on the C registers if the
attacker is able to choose a pair of plaintext that will give similar C final states before MAC
finalisation occurs. The possibility of extending this to a MAC forgery attack needs further
investigation.

REFERENCES

 Bellare, M., & Namprempre, C. (2008). Authenticated Encryption: Relations among Notions
and Analysis of the Generic Composition Paradigm. Journal of Cryptology, 21(4), 469-
491.

Bernstein, D. J. (2007). Cycle counts for authenticated encryption. Retrieved 22 July 2009,
from http://www.ecrypt.eu.org/stream/papersdir/2007/015.pdf

Braeken, A., Lano, J., Mentens, N., Preneel, B., & Verbauwhede, I. (2005). SFINKS : A
Synchronous Stream Cipher for Restricted Hardware Environments. Retrieved 22 July
2009, from http://www.ecrypt.eu.org/stream/ciphers/sfinks/sfinks.ps

Cho, J. Y., & Pieprzyk, J. (2006). Crossword Puzzle Attack on NLSv2. In J. A. Garay, A. K.
Lenstra, M. Mambo & R. Peralta (Eds.), 10th International Conference on Information
Security, ISC2007 (Vol. 4779 of Lecture Notes in Computer Science, pp. 230-248):
Springer.

Courtois, N. (2005). Cryptanalysis of Sfinks. In D. Won & S. Kim (Eds.), Information
Security and Cryptology - ICISC 2005 (Vol. 3935 of Lecture Notes in Computer Science,
pp. 261-269): Springer.

Dawson, E., & Nielsen, L. (1996). Automated cryptanalysis of XOR plaintext strings.
Cryptologia, 20(2), 165-181.

Dworkin, M. (2001). Recommendation for Block Cipher Modes of Operation: Methods and
Techniques. Retrieved 26 July 2009, from http://csrc.nist.gov/publications/nistpubs/800-
38a/sp800-38a.pdf

European Network of Excellence for Cryptology (2008). The eSTREAM Project. Retrieved 20
July 2009, from http://www.ecrypt.eu.org/stream/index.html

Good, T., Chelton, W., & Benaissa, M. (2006). Review of stream cipher candidates from a
low resource hardware perspective. Retrieved 26 July 2009, from
http://www.ecrypt.eu.org/stream/papersdir/2006/016.pdf

www.manaraa.com

16

Hawkes, P., Paddon, M., & Rose, G. G. (2007). The Mundja Streaming MAC. Retrieved 26
July 2009, from http://eprint.iacr.org/2004/271.pdf

Hawkes, P., Paddon, M., Rose, G. G., & de Vries, M. W. (2006). Primitive Specification for
NLSv2. Retrieved 22 July 2009, from
http://www.ecrypt.eu.org/stream/p3ciphers/nls/nls_p3.pdf

Käsper, E., & Schwabe, P. (2009). Faster and Timing-Attack Resistant AES-GCM. Retrieved
23 July 2009, from http://homes.esat.kuleuven.be/~ekasper/papers/fast_aes.pdf

Lipmma, H. (2008). Fast Implementations of AES and IDEA for Pentium 3 and 4. Retrieved
July 23 2009, from http://research.cyber.ee/~lipmaa/implementations/

Menzes, A. J., Van Oorschot, P. C., & Vanstone, S. A. (1997). Handbook of Applied
Cryptography. Florida: CRC Press.

Rogaway, P. (2007). OCB - An Authenticated Encryption Scheme. Retrieved July 23 2009,
from http://www.cs.ucdavis.edu/~rogaway/ocb/index.html

Whiting, D., Schneier, B., Lucks, S., & Muller, F. (2005). Phelix - Fast Encryption and
Authentication in a Single Cryptographic Primitive. Retrieved 22 July 2009, from
http://www.ecrypt.eu.org/stream/ciphers/phelix/phelix.pdf

Wu, H., & Preneel, B. (2007). Differential-Linear Attacks against the Stream Cipher Phelix.
In A. Biryukov (Ed.), Fast Software Encryption (FSE 2007) (Vol. 4593 of Lecture Notes in
Computer Science, pp. 87-100): Springer.

