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ABSTRACT 

Authenticated Encryption (AE) is the cryptographic process of providing simultaneous 
confidentiality and integrity protection to messages. AE is potentially more efficient than 
applying a two-step process of providing confidentiality for a message by encrypting the 
message and in a separate pass, providing integrity protection by generating a Message 
Authentication Code (MAC) tag. This paper presents results on the analysis of three AE 
stream ciphers submitted to the recently completed eSTREAM competition. We classify the 
ciphers based on the methods the ciphers use to provide authenticated encryption and discuss 
possible methods for mounting attacks on these ciphers. 
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1. INTRODUCTION 

Modern information technology systems use cryptographic mechanisms to provide 
information security. Aspects of information security include confidentiality and data 
integrity. Confidentiality is the assurance that information is kept secret from unauthorised 
people. Where the storage or transmission medium is insecure, confidentiality is provided by 
using encryption algorithms. Integrity is the assurance that modification of messages will be 
detected. Integrity protection is achieved by using an authentication algorithm. 

Symmetric cryptographic primitives consist of block ciphers, stream ciphers and some 
Message Authentication Codes (MAC). In symmetric cryptography, both the sender and 
receiver have in their possession the same secret information (the secret key) and optional 
public information they use along with an algorithm to encrypt or decrypt data or produce a 
MAC tag. 

AE aims to provide simultaneous confidentiality and integrity for information using 
symmetric cryptography. The AE mechanism shown in Figure 1, works as follows: for 
encryption, a plaintext (denoted P) is changed to an unreadable format known as ciphertext 
(denoted C) and the MAC tag (denoted T) of the message is also calculated. This is performed 
using an authenticated encryption algorithm, which takes as input the plaintext message, the 
secret key (denoted K) and optionally, some public information (denoted IV). The output of 
the AE encryption consists of the ciphertext and MAC tag. These are sent across the 
unsecured channel to the receiver.  

Upon receiving the ciphertext (C’) and MAC tag (T) the receiver uses the authenticated 
decryption algorithm to recover the message and check whether it has been modified. This 
decryption algorithm takes as input the same key and IV used in the authenticated encryption 
algorithm and the received ciphertext C’. The output of the authenticated decryption 
algorithm is the plaintext P’ and the MAC tag T’. The receiver checks if the value of T’ is 
equal to T. If it is not the same, the receiver will know that the message has been modified.  
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Figure 1. Generic AE Diagram 

1.1 Stream Ciphers 

Stream ciphers encrypt one character at a time using a time-varying function. Traditionally, 
the character size is one bit. Modern day stream ciphers, especially those meant for software 
environments can encrypt more than one bit at a time. These stream ciphers are called word-
based stream ciphers. In either case, a critical component of the stream cipher is a keystream 
generator. 

A keystream generator typically consists of a series of storage registers called stages. 
These stages each contain one-bit for bit-based stream ciphers, or a series of bits for word-
based stream ciphers. Typical word sizes are 16-bits and 32-bits. The contents of these stages 
form the internal state of the keystream generator. The stages are often arranged to form shift 
registers.  

The operation of the keystream generator occurs in two phases. The initialisation phase and 
the keystream generation phase. In the initialisation phase, the key and IV are loaded into the 
internal state using an initialisation function. After this is done, the stream cipher transitions 
to the keystream generation phase. In the keystream generation phase, the internal state gets 
updated using a state update function. Selected stages are then combined using a carefully 
chosen output function to produce keystream. Note that this may be produced either one bit or 
one word at a time.  

The most common function used as the encryption and decryption function is binary 
addition modulo 2, also known as the XOR operation. The XOR function is used as it is fast 
and easy to implement in both hardware and software. Furthermore, due to XOR’s 
commutative properties, the same device can be used to perform both encryption and 
decryption functions. A stream cipher which uses the XOR function for encryption and 
decryption is called a binary-additive stream cipher. A diagram of a binary-additive stream 
cipher is shown in Figure 2. 

To encrypt a message, the sender initialises the keystream generator with the secret key 
and IV and then generates a length of keystream. The keystream and message are then 
combined using XOR operations to produce ciphertext. To decrypt the message, the receiving 
end must use the same key and IV to initialise the keystream generator and produce the same 
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keystream. The ciphertext and keystream are then combined using XOR operations to recover 
the plaintext.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Binary-additive stream cipher. 
 

1.2 Message Authentication Codes 
 

A Message Authentication Code (MAC) is a symmetric cryptographic primitive for providing 
message integrity protection. MACs take a message of arbitrary length and produce an output 
of fixed length known as a MAC tag. In addition to the message that is input however, MACs 
require the use of a secret key for the computation of the MAC tag. The use of the secret key 
means that even if an attacker has intercepted the message and knows the MAC algorithm that 
was used, they are unable to make changes to the message and calculate the corresponding 
MAC tag without knowledge of the key. MACs therefore provide data integrity and some 
degree of data-origin protection. MACs however, do not provide non-repudiation protection. 
That is, having verified the MAC tag of a message, we cannot be assured the claimed sender 
actually sent the message. To provide this non-repudiation, digital signatures are required. 
These make use of asymmetric cryptographic techniques which are beyond the scope of this 
paper. 

1.3 Authenticated Encryption Stream Ciphers 

An Authenticated Encryption (AE) stream cipher combines the mechanisms for providing 
both confidentiality and integrity protection into a single cryptographic primitive. The 
primitive has both a confidentiality component and an integrity component. Encryption using 
an AE cipher occurs in the following phases: 
 
1. Initialisation phase: The secret key and IV are used to initialise the confidentiality and 

integrity components. 
2. Keystream Generation and Message Accumulation phase: The plaintext message is 

encrypted and ciphertext is generated. Simultaneously, the message (either the plaintext 
or ciphertext) is used to update the integrity component in a message-dependent way. 
The updating of the integrity component is referred in this paper the accumulation of the 
message. 

3. MAC Finalisation phase: Once the plaintext has been encrypted, the integrity component 
undergoes some additional post-encryption operations. At the end of this phase, the 
MAC tag of the message is produced.  
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AE decryption occurs in the following phases: 
 
1. Initialisation phase: The secret key and IV are used to initialise the confidentiality and 

integrity components. 
2. Keystream Generation and Message Accumulation phase: The ciphertext message is 

decrypted and the plaintext is recovered. Simultaneously, the message (either the plaintext 
or ciphertext) is used to update the integrity component in a message-dependent way.  

3. MAC Finalisation phase: Once the plaintext has been decrypted, the integrity component 
undergoes some additional post-decryption operations. At the end of this phase, the MAC 
tag of the message is produced.  
 

1.4 Methods for providing Authenticated Encryption 

Bellare and Namprempre (Bellare & Namprempre, 2008) investigated the security properties 
of three methods for providing AE. These are Encrypt-and-MAC (E&M), MAC-then-Encrypt 
(MTE) and Encrypt-then-MAC (ETM). They refer to these methods collectively as generic 
compositions. These methods can be described as follows: 
 
1. Encrypt-and-MAC (E&M): The sender first forms a MAC tag of the plaintext, encrypts 

the plaintext, and then appends a MAC tag of the plaintext to ciphertext. At the receiving 
end, the receiver checks the message by first decrypting the ciphertext, and then 
generating his own MAC tag of the decrypted ciphertext and comparing this to the MAC 
tag that was received along with the message. 

2. MAC-then-Encrypt (MTE): The sender first appends a MAC tag of the plaintext to the 
message and then encrypts the augmented plaintext-MAC message. At the receiving end, 
the receiver checks the message by first decrypting the message to recover the plaintext 
and MAC tag, then computes the MAC tag of the received plaintext, and compares it to 
the MAC that was recovered through decryption. 

3. Encrypt-then-MAC (ETM): The sender encrypts the plaintext to get the ciphertext. A 
MAC tag of the ciphertext is then appended to the message. At the receiving end, the 
receiver will first check the MAC tag. If the verification check passes, the message is 
decrypted to recover to get plaintext. 

 
Bellare and Namprempre analyse the security of the three AE methods in terms of the 
following security properties: 
 
1. Indistinguishability of encryptions under the chosen plaintext attack denoted (IND-CPA). 
2. Indistinguishability of encryptions under the chosen ciphertext attack denoted (IND-

CCA). 
3. Non-malleability under the chosen ciphertext attack denoted (NM-CPA). 
4. Integrity of plaintexts denoted (INT-PTXT). 
5. Integrity of ciphertexts denoted (INT-CTXT). 

 
In a chosen plaintext attack, the attacker is able to choose the plaintext to be encrypted and get 
the corresponding ciphertext, while in a chosen ciphertext attack, the attacker can choose 
ciphertexts to be decrypted and see the plaintext corresponding to that chosen ciphertext. 
Indistinguishability is the inability of an attacker to learn any information about the plaintext 
from a challenge ciphertext. Non-malleability is the inability of the attacker, given a challenge 
ciphertext C, to produce a different ciphertext C’ such that there is no meaningful relationship 
between the decrypted messages P and P’ corresponding to C and C’ respectively. In their 
analysis, Bellare and Namprempre prove that if the integrity component of an AE algorithm is 
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strongly unforgeable, the ETM scheme provides all five of the security properties listed 
above. 

 
2.  The e-STREAM PROJECT 

The eSTREAM project (European Network of Excellence for Cryptology, 2008), launched in 
2005, was a multi-year project whose goal was to identify new stream ciphers which might be 
suitable for widespread adoption. Of the 34 stream ciphers that were submitted, seven 
included an authentication mechanism. In this paper, we analyse three of these ciphers: 
Sfinks, NLSv2 and Phelix. A summary of the characteristics of these ciphers, with regards to 
their maximum key sizes, IV sizes, MAC tag size and the maximum amount keystream that 
can be generated before rekeying needs to be done is given in Table 1. 
 
Table 1. Basic parameters for three selected eSTREAM AE ciphers 

Cipher 
Name 

Usage Environment Max. Key 
Size in 
bits 

Max. IV 
Size in 
bits 

MAC tag 
size in 
bits 

Max. 
Keystream 
(in bits) 
generated 
from a Key-
IV pair 

Sfinks Hardware 80 80 64 240 
Phelix Software/Hardware 256 128 128 267 
NLSv2 Software 128 128 128 253 

 

2.1 Description of eSTREAM AE Ciphers 

This section of the paper gives a brief description of the three eSTREAM AE ciphers. The 
description includes the keystream generation, message accumulation and MAC finalization 
phases. For a more detailed description of the ciphers, the reader is referred to the respective 
specification papers. 
 
2.1.1 Sfinks 

Sfinks (Braeken et al., 2005)  is a stream cipher intended for use in hardware environments. 
The lengths of the secret key and nonce are each 80 bits. Sfinks generates a 64-bit MAC tag 
for message integrity protection. A diagram showing the relationship between the major 
components of Sfinks are shown in Figure 3.  
 

 
Figure 3. Sfinks Diagram 
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Sfinks can be divided into two sub-functions, the confidentiality component and the integrity 
component. Both components make use of the 256-bit regularly clocked LFSR, denoted R, 
and a 16-bit inversion S-Box.  

During the keystream generation phase, the contents of selected stages from R are fed into 
the S-Box. One bit from the output of the S-Box is combined with the contents of another 
stage of R to form the keystream output of Sfinks. The plaintext message is then XORed with 
the keystream to produce ciphertext. 

The integrity component of Sfinks makes use of two 64-bit registers. The first register, 
denoted SR, is a pure shift register. During message accumulation, at each time interval the 
contents of all the stages of SR are moved along, with the contents of the last stage being 
discarded. A single bit output from the S-Box is used to update SR. The second 64-bit register 
is denoted MAC. MAC’s update function is plaintext dependent. If the current plaintext bit 
being encrypted is 0, the contents of MAC remain unchanged while SR is updated. If the 
current plaintext bit is 1, SR is updated and the updated contents of SR are XORed with the 
contents of MAC.  

Once all the plaintext has been encrypted, Sfinks enters its MAC finalization phase. In this 
phase, the 64-bit contents of MAC are XORed with 64-bits of fresh keystream to generate the 
64-bit MAC tag. 

 
2.1.2 Phelix 

Phelix (Whiting et al., 2005) is a synchronous cipher intended for use in both software and 
hardware environments. It uses a secret key, which can be up to 256-bits in size.  The IV can 
be up to 128-bits in size. Phelix generates a 128-bit MAC tag for message integrity protection. 
Phelix uses one component to provide both confidentiality and integrity protection. 

The internal state of Phelix consists of nine 32-bit stages called state words, giving Phelix a 
total internal state size of 288 bits. These state words are divided into two groups: active state 
words and old state words. The five active state words are used in the state update function 
while the four old state words are used in the keystream generation. 

Operations in the state update function of Phelix can be described as being performed as a 
series of rounds. A round consists of adding (or XORing) one active state word into another 
active state word, and rotating the former word. An example of a round is shown in Figure 4, 
where the active state words are represented by a, b, c, d, e. The outputs from a round are a’, 
b’, c’, d’and e’. Twenty of these rounds make up one Phelix block function. Phelix’s block 
function is actually two applications of the half-block function H. The details of H are 
available in the Phelix paper. Phelix uses these block functions to do its encryption, 
decryption and MAC operations. 

 
 
 
 
 
 
 
 
 
 

Figure 4. One Phelix Round 
 

During keystream generation and message accumulation, H takes in an input key in the 
first half-block to update the active state words. In the second half-block, the second input key 
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and a plaintext word are used to compute the keystream word, which is then XORed with the 
plaintext to form the ciphertext. 

After all the plaintext has been encrypted, Phelix enters the MAC finalization phase. In this 
phase, a state word is modified by XORing with a constant value. After the state word is 
modified, a post-mixing step is applied. In the post-mixing step, the value l(p) mod 4, which 
is the length of the plaintext in bytes, is treated as plaintext and encrypted eight times. The 
keystream generated from this process is discarded. After this initial post-mixing step, 
additional post-mixing is applied. The same value l(p) mod 4 is encrypted four more times. 
The four 32-bit keystream words generated from these four encryption operations form the 
128-bit MAC tag for the message. 

 
2.1.3 NLSv2 

NLSv2 (Non-Linear Sober Version 2) (Hawkes et al., 2006) is an updated version of NLS. 
NLS and NLSv2 are synchronous stream ciphers. NLSv2 uses a secret key and nonce, each 
128 bits long. NLSv2 generates a 128-bit MAC tag. Relationships between the major 
components of NLSv2 are shown in Figure 5.  
 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 5. NLSv2 Diagram 

NLSv2 can be divided into two sub-functions, the confidentiality component and the integrity 
component. Both the components make use of a non-linear feedback shift register (NLFSR), 
denoted R, a nonlinear filter and an S-Box denoted S. R is a shift register consisting of 17 
stages, each of size 32 bits, giving R a total internal state size of 544 bits. R is updated 
reguarly with a nonlinear state update function. The S-Box S is used in NLSv2 to provide the 
non-linearity.  

In the keystream generation phase, the contents of selected stages of R are combined with a 
key-dependent constant, KONST, using a nonlinear filter function. The result of these 
operations is a 32-bit keystream word. These 32 bits of keystream is XORed with  32 bits of 
plaintext to form 32 bits of ciphertext. 
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The integrity component of NLSv2 makes use of a MAC function called Mundja (Hawkes 
et al., 2007). Mundja consists of two 256-bit registers. One of the registers SHA accumulates 
values using a strengthened version of the SHA-256 hash function, while the other is a 256-bit 
Cyclic Redundancy Check (CRC) register C. During the message accumulation phase, the 
plaintext message is accumulated in both SHA and C.  

After all the plaintext has been encrypted, NLSv2 enters the MAC finalization phase. This 
phase consists of three steps. In the first step, a constant word is added into SHA and any 
resultant keystream generated is discarded. In the second step, C’s state update function is run 
eight times with an all-zero plaintext and the content of one of its states is added into SHA. 
SHA’s internal state is then updated. In the final step, C’s state update function is continually 
cycled with zero bit words. This time however, after the contents of C are added into SHA, 
and SHA’s internal state is updated, the contents of one of SHA’s stages are used as a 32-bit 
output for a portion of the MAC tag. This process is repeated another three times to produce 
the 128-bit MAC tag. 
 
3 ANALYSIS TECHNIQUES 

This section briefly describes the major techniques attackers use to attack stream ciphers and 
MACs. 

3.1 Stream Cipher Cryptanalysis 

For stream cipher cryptanalysis, it is usually assumed that the attacker has access to the 
ciphertext, and possibly a certain amount of plaintext corresponding to the known ciphertext, 
or an amount of keystream. A stream cipher designer needs to take into account all three as 
possession of any of them makes the cipher vulnerable to certain attacks.   

Where the attacker has access to the ciphertext, two attack types should be considered. 
These are the ciphertext-only (or known-ciphertext) attack and the chosen ciphertext attack. If 
it is possible to attack a stream cipher using the ciphertext-only attack, without making use of 
plaintext, this means that the stream cipher’s keystream generator is very weak. A chosen 
ciphertext attack allows the attacker to select which ciphertexts to be decrypted and attempts 
to recover the key from this ciphertext. This model is not relevant to synchronous stream 
ciphers since the keystream generated is not ciphertext-dependent. 

Where the attacker has possession of some plaintext and the corresponding ciphertext, two 
attack types can be considered: known-plaintext attack and chosen plaintext attack. For 
known plaintext attacks, an attacker gains access to an amount of keystream by XORing the 
plaintext and its corresponding ciphertext. For chosen-plaintext attacks, the attacker chooses 
the plaintext they want encrypted and obtains the corresponding ciphertext. For most binary-
additive stream ciphers, the outcome of the known plaintext and chosen plaintext attacks is 
the same: a segment of the keystream is also revealed. However, if the keystream is plaintext-
dependent, a chosen-plaintext attack may be an effective approach. This may be the case for 
Phelix.  

Distinguishing attacks are a form of attack that allows an attacker to determine if a 
keystream has been generated from a particular stream cipher. Since the keystream output 
from a stream cipher is supposed to look random, a successful distinguishing attack on a 
stream cipher implies that there exist some relationships between the keystream bits that can 
be used to identify the cipher. Although distinguishing attacks will not directly result in the 
recovery of either the key or internal state, they reveal a potential weakness. There is also a 
possibility that the observation may be extended into a key or state recovery attack. In order to 
curb distinguishing attacks, stream cipher designers often impose limits on how much 
keystream can be generated using a single key-IV pair before rekeying is required. 
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An attacker’s main goal is to recover the plaintext message without prior knowledge of the 
key. (In general, the attacker seeks to recover either the master key for the stream cipher or a 
session key. In some attacks, it may be possible to recover the plaintext without knowledge of 
a key, for example, if the same keystream is used more than once (Dawson & Nielsen, 1996)).  

A master key attack can be performed regardless of whether or not the initialisation 
function of the stream cipher is one-way. A master key attack means that data from multiple 
encryption sessions will be rendered insecure. Once the key is recovered, the attacker will 
initialise the cipher with the recovered key and IV, generate some keystream and recover the 
plaintext from the ciphertext. The most naive approach to key recovery is to try all possible 
keys. Stream ciphers are considered weak if an attacker is able to recover the key using less 
than O(2k), where k is the size of the key in bits. 

Session key attacks are also known as state recovery attacks. In a modern-day stream 
cipher, the secret master key and the IV are combined together during the initialisation phase 
using an initialisation function.  Recovery of the internal state means that data from that 
encryption session would be rendered insecure since the attacker who knows the internal state 
of the cipher would be able to generate keystream to recover the plaintext message. Encrypted 
data from other sessions, assuming that a different IV was used, might still be secure.  
  
3.2 Message Authentication Code Analysis 

For MAC analysis, the attacker is assumed to have complete knowledge of the MAC 
algorithm and the format of the message. The attacker can either mount a forgery attack or a 
key recovery attack. Resistance to MAC attacks is measured using smallest number of 
operations with regards to two variables; the key size of the MAC, denoted k, and the size of 
the MAC tag value, denoted d. There are three attack models against which MACs have to 
provide resistance. These are the known-text attack, the chosen-text attack and the adaptive 
chosen-text attack.  

In MAC forgery attacks, the attacker is able to find a new message whose MAC value has 
the same value as that of the original message. To avoid MAC forgery the complexity of the 
attack should be O(2min(k,d)) (Hawkes et al., 2006). There are two types of forgery attacks, 
selective forgeries and existential forgeries: 

 
1. Selective forgery: An attacker is able to produce a new message-MAC pair of their own 

choosing. In terms of the above-mentioned attack models, the known-text attack implies 
that the attacker attempts to forge a MAC based on an arbitrary length message. The 
chosen-text attack allows the attacker to analyse the resultant text-MAC pair (Menzes et 
al., 1997).  In the adaptive chosen-text attack, the attacker is allowed successive queries to 
the MAC algorithm based on the results of previous queries (Menzes et al., 1997). 

2. Existential forgery: An attacker is able to produce a new message-MAC pair, but has no 
control over the contents of that message. 

 
A key-recovery attack allows the attacker to recover the secret key and enables an attacker to 
mount selective forgery attacks. A key-recovery attack constitutes a total break on the 
integrity component of an AE stream cipher. A secure MAC should allow no less than O(2 k) 
operations to recover the key. 
 
3.3 Comments about AE Cryptanalysis 
Key recovery attacks on AE systems are of particular importance. In generic composition 
constructions, a key recovery attack on either the confidentiality or integrity component does 
not necessarily affect the security of the other component as separate keys are used for 
confidentiality and integrity protection. However, for AE systems, the same key is used for 
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both confidentiality and integrity protection. Thus, a key recovery attack on either component 
compromises the security provided by the other component. 

The interaction between the confidentiality and integrity components of the stream ciphers 
also needs to be carefully studied. If the AE stream ciphers use some of the same structure for 
both confidentiality and integrity components, potential information leakage about the internal 
state of the confidentiality component might be obtained from the MAC tag, or information 
about the internal state of the MAC seen in the internal state of the integrity components and 
vice-versa. 

4 Analysis of eSTREAM AE Ciphers 
In this section, we present our analysis of the three eSTREAM AE ciphers. In Section 4.1, we 
classify the three using the framework given by Bellare and Namprempre reviewed in Section 
1.4. In Section 4.2, we compare the efficiency of the three AE ciphers. In Section 4.3, an 
analysis of security of the three algorithms is presented. 
 
4.1 Classification based on Bellare and Namprempre generic composition scheme. 

The classification under Bellare and Namprempre’s generic composition scheme is shown in 
Table 2. It should be noted that although the methods used in Bellare and Namprempre’s 
analysis were based on a two-pass method, this can be mapped to a one-pass method based on 
how the cipher encrypts the plaintext message and calculates a MAC. 

Table 2. Classification of eSTREAM authenticated encryption ciphers using Bellare and 
Namprempre’s scheme. 

 

 

 

Discussion of classification results 

NLSv2 would be classified as an E&M scheme. In NLSv2, the plaintext is accumulated in 
two registers, the SHA register and C. Although a content of R is used in the state update 
function for the SHA registers, NLSv2 are ciphertext independent. Furthermore, the MAC for 
NLSv2 is not a ciphertext output. Instead, the MAC is generated using the contents of one the 
SHA registers. 

Phelix would be classified as using an E&M scheme. Phelix uses one register for 
performing encryption, decryption and MAC generation operations. After all the plaintext has 
been encrypted, Phelix runs additional operations on the registers and generates the MAC 
using the keystream word output of these additional operations. 

Sfinks would be classified as a MTE scheme. During the encryption or decryption process, 
the plaintext is accumulated in SR and MAC. During the MAC finalization process, the 
contents of the plaintext-dependent MAC are encrypted with 64-bits of fresh keystream. This 
is similar to the MTE scheme, whereby the MAC of the message is appended to the encrypted 
message and encrypted. 

We can also make two observations about the MTE scheme requires two passes over the 
same message. The first pass calculates the MAC of the plaintext message and the second 
pass encrypts the appended plaintext and MAC. Although Sfinks uses the MTE method for 
providing authenticated encryption, it might not be the most efficient way of designing an AE 
stream cipher. 

Cipher E&M MTE ETM 
Sfinks    
Phelix    
NLSv2    
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The second observation is that while Bellare and Namprempre prove that the ETM scheme 
provides the most security, none of the three ciphers use it.  This could be because the E&M 
scheme potentially provides the most efficient way of encrypting the plaintext message and 
the MAC. With the E&M scheme, the cipher would be able to perform operations for 
obtaining the ciphertext and MAC of the plaintext simultaneously, while for the ETM 
scheme, there is the requirement that the ciphertext would need to be available before any 
MAC calculations can be performed on it. 

 
4.2 Efficiency Analysis 

One of the key reasons for using stream ciphers is that they offer superior performance at 
encrypting large amounts of data when compared to the other class of symmetric 
confidentiality algorithms namely, block ciphers.  

In analysing the efficiency of a stream cipher, one important measure is cycles-per-byte 
(CPB). This measures how much CPU cycles it takes to encrypt a single byte. The lower the 
CPB, the more efficient the stream cipher is. Another CPB measurement we can measure is 
how much CPU cycles the ciphers require for initialising and rekeying. This is an important 
measure as the longer it takes, the longer the sender needs to wait before generation of fresh 
keystream begins. This in turn, leads to a delay in sending encrypted data, a delay which 
might not be acceptable in real-time communications. CPB cycles for initialisation and 
rekeying are not listed in this paper. 

The other important measure is throughput. This is typically measured in Gigabits per 
second (Gbps). A larger Gbps value means that the cipher can encrypt a larger amount of data 
per second.  

One of the key criteria of the eSTREAM project was that the ciphers submitted had to be 
faster than the AES block cipher in counter-mode (AES-CTR) (Dworkin, 2001).  Note that we 
were unable to find any publicly available literature which compares the efficiency of all three 
stream ciphers when implemented on a single machine. Neither was there any comparison 
which compared all seven AE stream ciphers performing both confidentiality and integrity 
operations. One possible reason for this is that the some of the efficiency analysis on the 
stream ciphers were done during the later stages of the project, when insecure ciphers were 
dropped from the competition. In this case, it wouldn’t make sense to do an efficiency 
analysis on ciphers which have been deemed insecure by the cryptographic community. 

Table 3 lists the timings of NLSv2 and Phelix. For the NLSv2 cipher, we have included 
two versions. NLSv2 (submitted version) is the version which was submitted by the authors. 
NLS with poly1305 is a modified design by Bernstein. In his design, Bernstein used the 
NLSv2 confidentiality component together with his own MAC algorithm, poly1305. The idea 
of including NLS with poly1305 is to show how efficient the original integrity component is 
compared with an integrity component added by others. Column 1 lists timings by Bernstein’s 
timing comparisons of NLS and Phelix. Column 2 lists the timings for AES-OCB (Rogaway, 
2007). AES-OCB is one of the most efficient AE block cipher designs today. For a fair 
comparison, AE stream cipher timings should be compared with AE block cipher timings. 
AES-CTR mode only provides confidentiality protection. The extra computational operations 
needed to provide integrity protection should be taken into account when analysing the 
efficiency of AE stream ciphers.  
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Table 3. Efficiency Comparison of ciphers. This table’s timings are obtained combination 
from Bernstein (Bernstein, 2007) and Lipmma (Lipmma, 2008).  

Cipher CPU Type/Speed 1 2 
Cycles per byte 
(encryption). 
(Bernstein, 2007) 

Cycles per byte 
(encryption) for 
AES-OCB 
(Lipmma, 2008). 

Phelix Pentium 4 3400 
MHz 

10.91  
 
 
16.60 

NLSv2 
(submitted 
version) 

Pentium 4 3400 
MHz 

18.44 

NLS with 
poly1305 
(Bernstein’s 
version) 

Pentium 4 3400 
MHz 

13.24 

 

Discussion of efficiency results 

There are various variables which could affect the timing results. Firstly, the hardware the 
ciphers are run on will affect the results. For example, a hardware-based cipher run on 
software might not give the best performance results. The same code run on two different 
processors could give different efficient results as well.   

Secondly, we need to consider if the code run on the machines are optimised versions of 
the algorithm. If the code for the algorithm is optimised for the CPU the code is being run on, 
it is possible to achieve very good speeds. For example, the fastest known AES-CTR code 
was implemented on an Intel Core 2 Quad 64-bit processor and achieved a CPB of 7.6 
(Käsper & Schwabe, 2009), a three-fold increase over the official benchmarks used in 
eSTREAM. The programming language is also an important factor. Implementations written 
in assembly are usually faster than implementations written in other programming languages. 

In his efficiency analysis, Bernstein compared various stream ciphers combined with his 
own MAC, poly1305. He implemented two versions of NLSv2; one of them used the default 
authentication method given in the specification while the other combined the confidentiality 
component with poly1305. Bernstein did not implement Phelix with poly1305 as Phelix 
already uses the same register for providing confidentiality and integrity protection. As 
Column 1 shows, the original NLSv2 CPB value is the least efficient of the ciphers Bernstein 
tested, even when compared to his own design. It is because of NLSv2’s slow integrity 
performance that the integrity component was dropped in the final phase of the project. 

Phelix exhibited the best results of all three ciphers. It is even faster than the timings AES-
OCB obtained in Colum 3. This makes Phelix an ideal candidate for AE stream ciphers, since 
it meets the original goal of having an AE stream cipher whose performance is faster than an 
AE block cipher. 

The efficiency analysis of a hardware-based stream cipher is different from a software-
based stream cipher. Hardware-based stream ciphers are usually implemented in small, low-
powered devices with a small amount of memory. This means that components which can be 
implemented efficiently in software, like S-Boxes, might not be as efficient in hardware. One 
method of measuring the hardware cost of a stream cipher is through NAND gates (Braeken 
et al., 2005). The smaller the number of NAND gates, the smaller the hardware the cipher is 
implemented on could be. If the number of NAND gates is too large, the chances of the 
stream cipher being implemented on hardware is lower (Good et al., 2006). Another concern 
of hardware stream ciphers is power usage.  It is essential that if the card is to be implemented 
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on, for example, a contactless smart card, the peak power consumption should be as low as 
possible. If the device is battery-powered, the cipher would need to be as energy-efficient as 
possible (Good et al., 2006). 
  
4.3 Cryptanalysis on selected e-STREAM ciphers 
This section describes the current attacks which have been applied to three eSTREAM 
ciphers. It presents the current publicly known cryptanalysis on the stream ciphers and 
presents some ideas on new attacks. 
 
4.3.1 Sfinks Analysis 
 
Current Cryptanalysis of Sfinks 
The only cryptanalysis on Sfinks in the public literature is a paper by Courtois (Courtois, 
2005). Courtois used a cryptanalyical technique based on the known plaintext attack called a 
fast algebraic attack. Courtois used the technique to attack the confidentiality component of 
Sfinks, recovering the internal state of Sfinks. Algebraic attacks on LFSR-based stream 
ciphers work because an attacker is able to construct a series of linear combinations which 
relate to keystream bits to all the bits of internal state. Therefore, if an attacker has enough 
keystream bit outputs, he can construct a series of multivariate equations and may be possible 
to solve them.  Courtois showed that it may be possible to recover the internal state of Sfinks 
using 238.5 keystream bits. While the amount of keystream falls within the limits set by 
Sfinks’s designers (see Table 1), it could only be a theoretical break since total operations 
required in the other phases of the attack surpass the security bounds of Sfinks. 
 
New Analysis of Sfinks 
One possible attack which could be applied to Sfinks is the MAC forgery attack. Since the 
common component of both the confidentiality and integrity component is the Boolean 
function that is what we focus on in this paper. Preliminary investigations of the output of a 
scaled-down, 64-bit Boolean function behind a 17-bit LFSR have revealed that the n-bit tuple 
output is not uniform. In this case, the n-bit tuple output refers to an n consecutive bit output 
from a Boolean function. Furthermore, if the n-bit tuple output is large enough, there are 
some outputs which will not occur at all. Both these situations mean that there may be some 
internal state of SR and some 64 bit keystream which could occur more frequently than others. 
Recalling the description of Sfinks from Section 2.1.1, the state update function of MAC is 
plaintext-dependent. This potentially leaves Sfinks vulnerable to a chosen-plaintext attack.  In 
this attack, the attacker could control when the contents of SR gets XORed to MAC.  Thus, the 
final contents of MAC before MAC finalization occurs could be biased. If the 64-bit of fresh 
keystream generated during MAC finalization is also biased, the final MAC value would be 
biased. 
 
4.3.2 Analysis of Phelix 
 
Current Cryptanalysis of Phelix 
Wu and Preneel (Wu & Preneel, 2006) used cryptanalyical technique based on the chosen- 
plaintext attack, called the differential-linear attack, to mount a key recovery attack on 
Phelix’s confidentiality component. In this technique, carefully chosen plaintexts are 
encrypted and the output as the plaintexts are passed through a selected round is observed. 
However, for this attack to succeed, repeated IVs had to be used. For the attack to succeed, a 
total of  chosen IVs and  chosen plaintext bits had to be used. The total number of 

operations used in the attack was  operations. Although the amount of chosen plaintext 
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and operations needed in the attack is below the bounds imposed by the designers, this attack 
required the use of repeated IVs, which violates the basic requirements needed for proper use 
of a stream cipher. This use calls for a nonce to be only used once, not twice per key, as was 
the case of Wu & Preneel’s attack. 
 
New Analysis of Phelix 
Recall the description of Phelix in Section 2.1.2. The plaintext message is used in the 
generation of fresh keystream. This leaves it open to chosen plaintext attacks, specifically 
attacks with regards to IND-CPA, which was described in Section 1. If an attacker wants to, 
for example, forge a MAC, they would need to be able to also choose carefully selected 
plaintext. However, unlike the differential-linear attack which Wu and Preneel employed, 
where they used the differences observed after the plaintext is passed through the particular 
round, the attacker who hopes to mount a successful MAC forgery would need to ensure that 
differences in the plaintext would cancel out after being passed through all 20 encryption 
rounds and the 12 additional rounds it goes through before the final MAC is produced. 
 
4.3.3 Analysis of NLSv2 
 
Current Cryptanalysis of NLSv2 
Cho and Pieprzyk (Cho & Pieprzyk, 2006) used a technique based on the known plaintext 
attack called a distinguishing attack on NLSv2’s confidentiality component. This attack 
investigates high correlation between two neighbouring bits of the cipher. In their analysis, 
they noted that bit number 29 and 30 of the output of S-Box had a high correlation. So the 
attack exploits this correlation to make a linear approximation on NFSR and on NLF. As a 
result of that, a distinguisher of NLSv2 has a bias of 2-37 and so the attacker required only 279 

bits of keystream to distinguish the keystream of NLSv2 from random. Cho and Pieprzyk 
claim that this falls within the amount of keystream generated (280 bits) before rekeying needs 
to be done. However, from Table 1, a new session key should be generated after at most 253 
bits of plaintext are encrypted. This means that the distinguishing attack of Cho and Pieprzyk 
has no practical significance. 
 
New Analysis of NLSv2 
This analysis focuses on the integrity component of NLSv2. From the description in 2.1.3, we 
can make an observation about the integrity component of NLSv2. The CRC register C is 
updated in a linear manner and it takes as input, the plaintext word that is going to be 
encrypted. This may leave it vulnerable to a chosen plaintext attack. In this attack, the attacker 
mount a chosen-plaintext attack and select carefully selected plaintext that would yield the 
same final state before the final MAC processing phase starts. Assuming the same key and IV 
are used, any further updates from this point onwards is insignificant, as the final MAC 
processing consists of a standard series of steps. The values generated from this are the same 
if the same key and IV are used. However, even if the attacker is able to generate collisions 
for the CRC registers, they will not be able to forge a MAC. This is because the integrity 
component of NLSv2 consists of another register, the SHA registers. Therefore, even with 
collisions in the CRC registers, with plaintext feeding into the SHA registers as well, the 
MAC values generated in the end will be different.  
 
5 CONCLUSION 
In this paper, we have classified the three AE ciphers according to Bellare and Namprempre 
based on the three common methods of providing authenticated encryption. The majority of 
the ciphers used the E&M scheme, due to the potential parallelisability of the confidentiality 
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and integrity components. However, more detailed analysis of other AE ciphers need to be 
done in order to establish if the E&M scheme of providing AE is the “best” choice.  

Secondly, a comparison of the efficiency of two ciphers was done. It is shown that 
NLSv2’s original authenticator is slower than AES-OCB. This was the main reason why 
NLSv2 was removed from the eSTREAM project. One of the key reasons for choosing AE 
stream ciphers over AE block ciphers is their high efficiency and speed. If the stream cipher is 
slower than an AE block cipher, it is unlikely to be adopted for use. Thus, an important design 
criterion for AE stream ciphers is that they should be faster than their block cipher 
counterparts. 

A review of the current attacks on the three ciphers shows that none of these attacks fall 
within the security bounds set by the designers and are of no practical significance. However, 
these attacks reveal weaknesses in the AE stream cipher design and warrant further 
investigation to see if more efficient attacks can be found. 

Finally, the integrity components of all three ciphers were analysed. The biased n-bit tuple 
output of a nonlinear Boolean function needs further investigation to establish the factors 
which could contribute to the bias and how this could be applied to a MAC forgery attack on 
Sfinks. We described a possible MAC forgery attack on Phelix assuming the attacker is able 
to find a pair of plaintext which can produce the same output after going through the 
keystream generation and MAC finalisation phases. Analysis of NLSv2 integrity component 
reveals it could be possible to mount a chosen-plaintext attack on the C registers if the 
attacker is able to choose a pair of plaintext that will give similar C final states before MAC 
finalisation occurs. The possibility of extending this to a MAC forgery attack needs further 
investigation.  
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